iPhone 5 is just 7.6 millimeters thin. To make that happen, Apple engineers had to think small, component by component. They created a nano-SIM card, which is 44 percent smaller than a micro-SIM. They also developed a unique cellular solution for iPhone 5. The conventional approach to building LTE into a world phone uses two chips — one for voice, one for data.
On iPhone 5, both are on a single chip. The intelligent, reversible Lightning connector is 80 percent smaller than the 30-pin connector. The 8MP iSight camera has even more features — like panorama and dynamic low-light mode — yet it’s 20 percent smaller. And the new A6 chip is up to 2x faster than the A5 chip but 22 percent smaller. Even with so much inside, iPhone 5 is 20 percent lighter and 18 percent thinner than iPhone 4S.
At the same time Apple designers were trying to define an ideal earbud shape, Apple sound engineers — acousticians — were focused on improving sound quality. First, they established a target sound for the Apple EarPods. That target: a person sitting in a room listening to high-quality speakers.
The biggest determinant of what you hear from any speaker is the movement of its diaphragm. The inward and outward motion is what creates sound. But earbud speaker diaphragms are typically made from a single material, which can limit sound output.
So Apple acousticians re-engineered an earbud speaker diaphragm with both rigid and flexible materials to minimize sound loss and maximize sound output.
Adding to the superior audio quality are strategically placed acoustic vents. The most notable of these vents is the one located in the stem of each EarPod. It allows air inside the stem, which acts as an acoustic chamber, to flow out. So you hear deeper, richer bass tones. The overall audio quality of Apple EarPods is so impressive, they rival high-end headphones that cost hundreds of dollars more.
Making a thinner, lighter iPhone meant even the display had to be thinner. Apple engineers accomplished that by creating the first Retina display with integrated touch technology. Which means instead of a separate layer of touch electrodes between display pixels, the pixels do double duty — acting as touch-sensing electrodes while displaying the image at the same time. With one less layer between you and what you see on iPhone 5, you experience more clarity than ever before. All on a display that’s 30 percent thinner than before.
3 comments: On Apple - iPhone 5 -what it took to make iPhone 5
It appears like wonderful article, having said that it just just one side in the medal. Awesome reading in any case, I normally appreciated superior brain teaser and solid amount of awesome information.
I actually liked your submit.Seriously wanting forward to read far more. Will read on...
Awesome posting. Will examine on...